Copies of the inside front and back covers of the Griffiths text are provided on the last page. 1. If $\nabla \times \mathbf{F} = 0$ everywhere, show that: - (a) $\oint \mathbf{F} \cdot d\mathbf{\ell} = 0$ for any closed loop. - (b) $\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{F} \cdot d\mathbf{\ell}$ is independent of path for any end points \mathbf{a} and \mathbf{b} . - (c) **F** can written as the gradient of a scalar function: $\mathbf{F} = -\nabla V$. - 2. If $\nabla \cdot \mathbf{F} = 0$ everywhere, show that: - (a) $\oint \mathbf{F} \cdot d\mathbf{a} = 0$ for any closed surface. - (b) $\int \mathbf{F} \cdot d\mathbf{a}$ is independent of surface for any given boundary. - (c) **F** can written as the curl of a vector function: $\mathbf{F} = \nabla \times \mathbf{A}$. - 3. Compute $(\hat{\mathbf{r}} \cdot \nabla) \hat{\mathbf{r}}$ where: $$\mathbf{r} = x\,\hat{\mathbf{x}} + y\,\hat{\mathbf{y}} + z\,\hat{\mathbf{z}}$$ and: $$\hat{\mathbf{r}} = \frac{\mathbf{r}}{r}$$ 4. Calculate the Laplacian of $T = e^{-5x} \sin(4y) \cos(3z)$. 5. Calculate the volume integral of $T=xy^2z$ over the prism in the figure below. 6. Test Stoke's theorem for the function $\mathbf{v} = xy\,\hat{\mathbf{x}} + 2yz\,\hat{\mathbf{y}} + 3zx\,\hat{\mathbf{z}}$ using the shaded triangular area shown below. #### **VECTOR DERIVATIVES** **Cartesian.** $d\mathbf{l} = dx \,\hat{\mathbf{x}} + dy \,\hat{\mathbf{y}} + dz \,\hat{\mathbf{z}}; \quad d\tau = dx \, dy \, dz$ Gradient: $$\nabla t = \frac{\partial t}{\partial x} \hat{\mathbf{x}} + \frac{\partial t}{\partial y} \hat{\mathbf{y}} + \frac{\partial t}{\partial z} \hat{\mathbf{z}}$$ Divergence: $$\nabla \cdot \mathbf{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$ Curl: $$\nabla \times \mathbf{v} = \left(\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z}\right) \hat{\mathbf{x}} + \left(\frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x}\right) \hat{\mathbf{y}} + \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y}\right) \hat{\mathbf{z}}$$ Laplacian: $$\nabla^2 t = \frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} + \frac{\partial^2 t}{\partial z^2}$$ **Spherical.** $d\mathbf{l} = dr \,\hat{\mathbf{r}} + r \, d\theta \,\hat{\boldsymbol{\theta}} + r \sin\theta \, d\phi \,\hat{\boldsymbol{\phi}}; \quad d\tau = r^2 \sin\theta \, dr \, d\theta \, d\phi$ Gradient: $$\nabla t = \frac{\partial t}{\partial r} \, \hat{\mathbf{r}} + \frac{1}{r} \frac{\partial t}{\partial \theta} \, \hat{\boldsymbol{\theta}} + \frac{1}{r \sin \theta} \frac{\partial t}{\partial \phi} \, \hat{\boldsymbol{\phi}}$$ Divergence: $$\nabla \cdot \mathbf{v} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 v_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta v_\theta) + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi}$$ Curl: $$\nabla \times \mathbf{v} = \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (\sin \theta \, v_{\phi}) - \frac{\partial v_{\theta}}{\partial \phi} \right] \hat{\mathbf{r}}$$ $$+ \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial v_{r}}{\partial \phi} - \frac{\partial}{\partial r} (r v_{\phi}) \right] \hat{\boldsymbol{\theta}} + \frac{1}{r} \left[\frac{\partial}{\partial r} (r v_{\theta}) - \frac{\partial v_{r}}{\partial \theta} \right] \hat{\boldsymbol{\phi}}$$ Laplacian: $$\nabla^2 t = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial t}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial t}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 t}{\partial \phi^2}$$ **Cylindrical.** $d\mathbf{l} = ds \,\hat{\mathbf{s}} + s \,d\phi \,\hat{\boldsymbol{\phi}} + dz \,\hat{\mathbf{z}}; \quad d\tau = s \,ds \,d\phi \,dz$ Gradient: $$\nabla t = \frac{\partial t}{\partial s} \hat{\mathbf{s}} + \frac{1}{s} \frac{\partial t}{\partial \phi} \hat{\boldsymbol{\phi}} + \frac{\partial t}{\partial z} \hat{\mathbf{z}}$$ Divergence: $$\nabla \cdot \mathbf{v} = \frac{1}{s} \frac{\partial}{\partial s} (s v_s) + \frac{1}{s} \frac{\partial v_{\phi}}{\partial \phi} + \frac{\partial v_z}{\partial z}$$ Curl: $$\nabla \times \mathbf{v} = \left[\frac{1}{s} \frac{\partial v_z}{\partial \phi} - \frac{\partial v_{\phi}}{\partial z} \right] \hat{\mathbf{s}} + \left[\frac{\partial v_s}{\partial z} - \frac{\partial v_z}{\partial s} \right] \hat{\boldsymbol{\phi}} + \frac{1}{s} \left[\frac{\partial}{\partial s} (s v_{\phi}) - \frac{\partial v_s}{\partial \phi} \right] \hat{\mathbf{z}}$$ Laplacian: $$\nabla^2 t = \frac{1}{s} \frac{\partial}{\partial s} \left(s \frac{\partial t}{\partial s} \right) + \frac{1}{s^2} \frac{\partial^2 t}{\partial \phi^2} + \frac{\partial^2 t}{\partial z^2}$$ ## **Triple Products** (1) $$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A}) = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B})$$ (2) $$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$$ #### **Product Rules** (3) $$\nabla (fg) = f(\nabla g) + g(\nabla f)$$ (4) $$\nabla (\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{A}) + (\mathbf{A} \cdot \nabla)\mathbf{B} + (\mathbf{B} \cdot \nabla)\mathbf{A}$$ (5) $$\nabla \cdot (f\mathbf{A}) = f(\nabla \cdot \mathbf{A}) + \mathbf{A} \cdot (\nabla f)$$ (6) $$\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B})$$ (7) $$\nabla \times (f\mathbf{A}) = f(\nabla \times \mathbf{A}) - \mathbf{A} \times (\nabla f)$$ (8) $$\nabla \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla)\mathbf{A} - (\mathbf{A} \cdot \nabla)\mathbf{B} + \mathbf{A}(\nabla \cdot \mathbf{B}) - \mathbf{B}(\nabla \cdot \mathbf{A})$$ #### **Second Derivatives** $$(9) \quad \nabla \cdot (\nabla \times \mathbf{A}) = 0$$ $$(10) \quad \nabla \times (\nabla f) = 0$$ (11) $$\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$$ #### FUNDAMENTAL THEOREMS Gradient Theorem: $\int_{\mathbf{a}}^{\mathbf{b}} (\nabla f) \cdot d\mathbf{l} = f(\mathbf{b}) - f(\mathbf{a})$ **Divergence Theorem**: $\int (\nabla \cdot \mathbf{A}) d\tau = \oint \mathbf{A} \cdot d\mathbf{a}$ Curl Theorem: $\int (\nabla \times \mathbf{A}) \cdot d\mathbf{a} = \oint \mathbf{A} \cdot d\mathbf{l}$ # BASIC EQUATIONS OF ELECTRODYNAMICS ## **Maxwell's Equations** *In general*: $$\begin{cases} \nabla \cdot \mathbf{E} = \frac{1}{\epsilon_0} \rho \\ \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \cdot \mathbf{B} = 0 \end{cases} \qquad \begin{cases} \nabla \cdot \mathbf{D} = \rho_f \\ \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \cdot \mathbf{B} = 0 \end{cases} \\ \nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \end{cases} \qquad \begin{cases} \nabla \cdot \mathbf{D} = \rho_f \\ \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \cdot \mathbf{B} = 0 \end{cases}$$ In matter: $$\begin{cases} \mathbf{\nabla} \cdot \mathbf{D} = \rho_f \\ \mathbf{\nabla} \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\ \mathbf{\nabla} \cdot \mathbf{B} = 0 \\ \mathbf{\nabla} \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{I}}{\partial t} \end{cases}$$ ## **Auxiliary Fields** Definitions: Linear media: $$\begin{cases} \mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P} \\ \mathbf{H} = \frac{1}{\mu_0} \mathbf{B} - \mathbf{M} \end{cases}$$ $$\begin{cases} \mathbf{P} = \epsilon_0 \chi_e \mathbf{E}, & \mathbf{D} = \epsilon \mathbf{E} \\ \mathbf{M} = \chi_m \mathbf{H}, & \mathbf{H} = \frac{1}{\mu} \mathbf{B} \end{cases}$$ # **Potentials** $$\mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t}, \qquad \mathbf{B} = \nabla \times \mathbf{A}$$ #### Lorentz force law $$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$ ## **Energy, Momentum, and Power** $$U = \frac{1}{2} \int \left(\epsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right) d\tau$$ $$\mathbf{P} = \epsilon_0 \int (\mathbf{E} \times \mathbf{B}) \, d\tau$$ Poynting vector: $$\mathbf{S} = \frac{1}{\mu_0} (\mathbf{E} \times \mathbf{B})$$ Larmor formula: $$P = \frac{\mu_0}{6\pi c}q^2a^2$$ $$P = \frac{\mu_0}{6\pi c} q^2 a$$ ## **FUNDAMENTAL CONSTANTS** $$\epsilon_0 = 8.85 \times 10^{-12} \,\mathrm{C}^2/\mathrm{Nm}^2$$ (permittivity of free space) $$\mu_0 = 4\pi \times 10^{-7} \,\mathrm{N/A^2}$$ (permeability of free space) $$c = 3.00 \times 10^8 \,\mathrm{m/s}$$ (speed of light) $$e_{\perp} = 1.60 \times 10^{-19} \,\mathrm{C}$$ (charge of the electron) $$m = 9.11 \times 10^{-31} \,\mathrm{kg}$$ (mass of the electron) ## SPHERICAL AND CYLINDRICAL COORDINATES # **Spherical** $$\begin{cases} x = r \sin \theta \cos \phi \\ y = r \sin \theta \sin \phi \end{cases}$$ $$\begin{cases} x = r \sin \theta \cos \phi \\ y = r \sin \theta \sin \phi \\ z = r \cos \theta \end{cases} \begin{cases} \hat{\mathbf{x}} = \sin \theta \cos \phi \, \hat{\mathbf{r}} + \cos \theta \cos \phi \, \hat{\boldsymbol{\theta}} - \sin \phi \, \hat{\boldsymbol{\phi}} \\ \hat{\mathbf{y}} = \sin \theta \sin \phi \, \hat{\mathbf{r}} + \cos \theta \sin \phi \, \hat{\boldsymbol{\theta}} + \cos \phi \, \hat{\boldsymbol{\phi}} \end{cases}$$ $$\begin{cases} r = \sqrt{x^2 + y^2 + z^2} \\ \theta = \tan^{-1} \left(\sqrt{x^2 + y^2} / z \right) \\ \phi = \tan^{-1} (y/x) \end{cases}$$ $$\begin{cases} r = \sqrt{x^2 + y^2 + z^2} \\ \theta = \tan^{-1} \left(\sqrt{x^2 + y^2} / z \right) \\ \phi = \tan^{-1} (y/x) \end{cases}$$ $$\begin{cases} \hat{\mathbf{r}} = \sin \theta \cos \phi \, \hat{\mathbf{x}} + \sin \theta \sin \phi \, \hat{\mathbf{y}} + \cos \theta \, \hat{\mathbf{z}} \\ \hat{\boldsymbol{\theta}} = \cos \theta \cos \phi \, \hat{\mathbf{x}} + \cos \theta \sin \phi \, \hat{\mathbf{y}} - \sin \theta \, \hat{\mathbf{z}} \\ \hat{\boldsymbol{\phi}} = -\sin \phi \, \hat{\mathbf{x}} + \cos \phi \, \hat{\mathbf{y}} \end{cases}$$ # **Cylindrical** $$\begin{cases} x = s \cos \phi \\ y = s \sin \phi \\ z = z \end{cases}$$ $$\begin{cases} x = s \cos \phi \\ y = s \sin \phi \\ z = z \end{cases} \begin{cases} \hat{\mathbf{x}} = \cos \phi \, \hat{\mathbf{s}} - \sin \phi \, \hat{\boldsymbol{\phi}} \\ \hat{\mathbf{y}} = \sin \phi \, \hat{\mathbf{s}} + \cos \phi \, \hat{\boldsymbol{\phi}} \\ \hat{\mathbf{z}} = \hat{\mathbf{z}} \end{cases}$$ $$\begin{cases} s = \sqrt{x^2 + y^2} \\ \phi = \tan^{-1}(y/x) \\ z = z \end{cases}$$ $$\begin{cases} s = \sqrt{x^2 + y^2} \\ \phi = \tan^{-1}(y/x) \\ z = z \end{cases} \begin{cases} \hat{\mathbf{s}} = \cos \phi \, \hat{\mathbf{x}} + \sin \phi \, \hat{\mathbf{y}} \\ \hat{\boldsymbol{\phi}} = -\sin \phi \, \hat{\mathbf{x}} + \cos \phi \, \hat{\mathbf{y}} \\ \hat{\mathbf{z}} = \hat{\mathbf{z}} \end{cases}$$